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A roadway departure (RwD) crash is defined as a crash that occurs after a vehicle crosses an edge line or a center
line, or otherwise leaves the designated travel path. RwD crashes account for approximately 50% of all traffic fa-
talities in the U.S. Additionally, crashes related to roadside fixed objects such as trees, utility poles, or other poles
(TUOP)make up 12–15% of all fatal RwD crashes in the U.S. Data spanning over seven years (2010–2016) shows
that TUOP crashes account for approximately 22% of all fatal crashes in Louisiana, which is significantly higher
than the national statistic. This study aims to determine the effect of crash, geometric, environmental, and vehicle
characteristics on TUOP crashes by applying the fast and frugal tree (FFT) heuristics algorithm to Louisiana crash
data. FFT identifies five major cues or variable threshold attributes that contribute significantly to predicting
TUOP crashes. These cues include posted speed limit, primary contributing factor, highway type,weather, and lo-
cality type. The balanced accuracy is around 56% for both training and test data. The current model shows higher
accuracies compared tomachine learningmodels (e.g., support vectormachine, CART). The present findings em-
phasize the importance of a comprehensive understanding of factors that influence TUOP crashes. The insights
from this study can help data-driven decision making at both planning and operation levels.
© 2019 International Association of Traffic and Safety Sciences. Production and hosting by Elsevier Ltd. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

According to the Federal Highway Administration (FHWA), the new
definition of a roadway departure (RwD) crash is a “crash inwhich a ve-
hicle crosses an edge line, a center line, or leaves the traveled way” [1].
From 2014 to 2016, an average of 18,779 fatalities resulted from RwD
crashes, making up 53% of all traffic fatalities in the U.S. The majority
of RwD crashes in the Fatality Analysis Reporting System (FARS) are
crashes in which the first event for any vehicle involved in the crash is
one of the following: running off road – right, running off road – left,
crossing the median, or crossing the centerline [2]. In addition, there
are several fixed object codes (e.g. trees, utility poles, other poles) that
are included based on the idea that a vehiclemust have left the roadway
in order to come in contact with those objects. Tree and utility pole/
other pole related (TUOP) crashes account for 12–15% of all RwD fatal
crashes in the U.S. This statistic is significantly higher for the state of
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Louisiana,where TUOP crashes represent around 22% of all fatal crashes.
Furthermore, all TUOP crashes increased by 5% from 2015 to 2016 [3].
These statistics prompted in-depth study of TUOP crashes in Louisiana.

In spite of recent advances in transportation safety research, there
have been very few research efforts on TUOP crashes. This study applied
the fast and frugal tree (FFT) heuristics algorithm to a seven-year
(2010–2016) TUOP crash dataset of Louisiana in order to identify signif-
icant factors regarding crash, geometric, environmental and vehicle
characteristics, and extract the decision rules for TUOP crashes. This
study is based on the premise that TUOP crashes are caused in an envi-
ronment resulting from roadway geometry and surrounding traffic con-
ditions. Our emphasis of the current study is limited to identify the key
contributing factors that influence the injury outcomes of TUOP crashes.
The results of this study support the idea that the application lens of
fast-and-frugal heuristics is well suited to describe and improve applied
decisionmaking to increase the safety of TUOP collisions. The findings of
the current research will be helpful in making data-driven decisions for
the reduction of TUOP crashes.

1.1. Literature review

Themost common approach to examine crash frequencies and their
injury severity is to start with a crash-frequency model and then
ting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
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consider the injury severity of the crash conditional on the crash having
occurred. Lord and Mannering provided a systematic review of widely
used crash frequency studies and their limitations [4], while Savolainen
et al. conducted a similar study on injury severity associated studies in
2011 [5]. In 2014,Mannering and Bhat summarized differentmethodol-
ogies used in these two areas with the inclusion of directions for future
studies [6]. The objective of most of the safety related studies is to iden-
tify how different variables affect crash occurrence or crash severity.
Both statistical and machine learning methods are widely utilized in
traffic safety analysis. Some of these methods are logistic regression
[7,8], decision trees [9–12], support vector machines [13,14], rough
sets [15], multiple correspondence analysis [16,17], association rules
mining [18], and deep learning [19,20].

Roadway departure related crashes have been examined by many
safety researchers. Based on a report by National Highway Traffic Safety
Administration (NHTSA) [21], run-off-road (ROR) crashes (a variant of
RwD crashes) accounted for nearly 65% of all crashes involving single
vehicles in the U.S. between 1991 and 2007. The most frequent types
of ROR crashes likely to result in a severe or fatal injury involve hitting
fixed roadside objects, such as TUOP [22]. According to this study,
these types of roadside hazards are the least treated ones, andmore ex-
tensive research on countermeasure design planning and management
would lower the severity of such crashes.

In 1980 Jones and Baum [23] conducted one of the earliest studies in
the U.S. that examined the factors that increase the likelihood of utility
pole related crashes using regression analysis. The factors identified by
this research include number of roadside poles, lateral offset of the
poles, pavement grade, roadway alignment, and posted speed limit. Fac-
tors that contribute to the severity of the pole related crashes include
stiffness of the pole and impact speed. Another early study from South
Australia revealed that from 1985 to 1996, 40% of all crashes resulted
in at least one fatality where the immediate cause of death was identi-
fied as a roadside fixed object [24]. For more detailed knowledge of
these early studies, readers should refer to a report developed by
Motor Accident Commission of National Health and Medical Research
Council [24].

Various statistical techniques have been utilized to analyze crash
data and identify associated variables influencing ROR type crashes in
the past. Nilsson et al. [25] conducted hierarchical agglomerative clus-
ter analysis on a set of crash data to identify similarities among crash
variables for countermeasure design in ROR crashes. The authors iden-
tified driver-related factors (e.g., drifting off, speeding), and environ-
mental factors (e.g., snowy and wet roadways, sharp curvatures) that
were statistically significant crash attributes for ROR type crashes. Al-
Bdairi et al. [26] developed an ordered random parameter probit
model to estimate the effects of various factors in ROR crashes for
large-trucks. In a later study, Al-Bdairi et al. [27] employed mixed
logit models to understand the effect of lighting conditions in ROR
crashes involving large-trucks. The findings of these studies suggest
that collision with a fixed object significantly increases the likelihood
of high injury severity in ROR crashes, and darkness increases the
probability of crash outcomes due to the decreased visibility as op-
posed to well-lit conditions.

Information gained from these studies provides valuable informa-
tion for designing test-scenarios and countermeasures that can be
used to study ROR crashes and reduce incidences of these types of
crashes resulting in injuries or fatalities. Dissanayake and Roy [28]
used a binary logit model to investigate crash variables in ROR crashes
and found that driver age, impairment, license status, speeding, road
surface condition, dark lighting condition, type of vehicle, and loss of
control are the most significant parameters in predicting crash severity
for ROR crashes. In another study, Dissanayake [29] investigated the fac-
tors influencing injury severity of single-vehicle ROR crashes involving
young drivers. According to this study, factors such as driving under
Please cite this article as: S. Das, B. Storey, T.H. Shimu, et al., Severity analy
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influence, rural environment, roadway curvatures, impact speed and lo-
cationwere found to bemost significant. The author also argued that se-
vere weather condition and physical impairment due to fatigue or
illness do not significantly affect the severity of single-vehicle ROR
crashes, which is contradictory to other studies [30,31].

In 2009, theNHTSA conducted a national study onRORcrashes using
FARS data on fatal crash data on passenger cars from 1991 to 2007 [30].
They found that roadway curvature, speeding, rural environment,
posted high speed limit, adverseweather conditions, and driver impair-
ment in terms of fatigue, sleep, and alcohol are the significant factors af-
fecting the severity of ROR crashes. Additionally, the results suggest that
under adverse weather conditions, young drivers and vehicle speeding
increase the likelihood of fatal single-vehicle ROR crashes. In another re-
search effort, the NHTSA [21] studied the pre-crash events, the critical
crash causation during crash events, and the factors in the pre-crash
phase of single-vehicle ROR crashes using National Motor Vehicle
Crash Causation Survey (NMVCCS) data from 2005 to 2007. Results
from a logistic regression model revealed that the most significant fac-
tors contributing to single-vehicle ROR type crashes are driver fatigue,
inattention, and drivers being in a hurry.

Crashes involving roadside fixed objects in general can draw better
association to crashes involving TUOP, which is the primary focus of
this paper. In a comprehensive study, Alruwaished [32] investigated
the factors influencing ROR crashes in which vehicles collided with ei-
ther another vehicle or a fixed object after leaving its designated travel
lane at a non-intersection area of the roadway. The RORmodel success-
fully identified nine variables that influence crash severity. These vari-
ables include roadway surface condition, type of collision, driving
under influence, speed limit, type of vehicle, and driver age and gender.
Another study used similar classification and regression tree modeling
to analyze factors influencing injury severity, and it found human errors
to be the most significant variables in ROR and RwD crashes [33]. Wat-
son et al. [34] examined the effects of roadside fixed objects by consid-
ering crash indicator values for segments with and without roadside
fixed objects. The findings revealed that there are consistently lower
crash indicators for roadwayswith no fixed roadside objects as opposed
to those that have fixed objects on the roadside, meaning that roadways
without fixed roadside objects have a much lower risk of crashes
occurring.

A study by Maine Department of Transportation revealed that [35],
the most prevalent factors contributing to utility pole crashes are rural
environment, roadway curvature, dark lighting condition, driver inat-
tention, speeding, poor roadway condition, and location and offset of
utility poles. Dumbaugh [36] analyzed tree and utility pole crash site lo-
cations to identify the reasons behind these types of crashes in an urban
environment. Many studies invested research efforts in analyzing safety
effects of various countermeasures. For more detailed knowledge on
these countermeasures, readers can refer to these studies [37–44].
Table 1 represents the key variables used by other studies found in the
existing literature.

According to the literature review under the scope of this paper, a
majority of studies identified roadway curvature, vertical grade, posted
speed limit, roadway surface condition, speeding, loss of control and
physical impairment of drivers as the variables that most significantly
affected RwD crashes. It is important to note that very few studies fo-
cused only on TUOP related crashes. Additionally, the past studies
have not considered algorithm-based modeling techniques to identify
the effect of the contributing factors. This study focuses only on TUOP
crashes to identify the key associated factors by using an algorithm-
based technique FFT. This research focuses on studying the association
of geometric, crash, environmental and vehicle-related variables with
the level of injury caused by the crash. This study demonstrated the ap-
plicability of FFT heuristics to better understand the association be-
tween the key contributing factors.
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Table 1
Findings from existing literature.

Variable Studies Key association patterns

Driver/Occupant Speeding Nilsson et al. [25], Dissanayake and Roy [28], Dissanayake
[29], NHTSA [30], Alruwaished [32], Rovšek et al. [33], MDOT
[35]

High speed is associated with higher number of RwD
crashes. NHTSA [31] indicates an odds ratio of 1.30 for
fatal ROR crashes.

Departure angle Nilsson et al. [25] Determination of the simulator-based departure angles of
the wheels for RwD crashes.

Loss of control NHTSA [21], Nilsson et al. [25], Al-Bdairi et al. [26], Al-Bdairi
et al. [27], Dissanayake and Roy [28], Rovšek et al. [33]

Loss of control is a significant crash contributing factor.

License status Al-Bdairi et al. [26], Dissanayake and Roy [28] Young drivers, irrespective of their license permit status,
are disproportionately involved in RwD crashes.

Seatbelt use Al-Bdairi et al. [26], Al-Bdairi et al. [11], Dissanayake [29] No seat-belt usage is associated with more severe
crashes.

Driving under influence (DUI) NHTSA [21], Al-Bdairi et al. [27], Dissanayake and Roy [28],
Dissanayake [29], NHTSA [30], Alruwaished [32],

DUI is positively associated with RwD crash occurrences.
NHTSA [31] indicates an odds ratio of 1.94 for fatal ROR
crashes.

Sleeping, fatigue, inattention,
disabilities and other physical
impairment

NHTSA [21], Al-Bdairi et al. [26], NHTSA [30], Rovšek et al.
[33], Dissanayake and Roy [28], MDOT [35]

NHTSA [31] indicates an odds ratio of 3.21 for fatal ROR
crashes.

Gender and age of the driver Dissanayake and Roy [28], Dissanayake [29], Alruwaished [32] Females are involved in less severe RwD crashes. Young
drivers are disproportionately involved in RwD crashes.

Vehicle Number of vehicles involved Al-Bdairi et al. [26], Al-Bdairi et al. [27] Majority of these crashes are single vehicle crashes.
Type of vehicle Dissanayake and Roy [28], Alruwaished [32] Majority of the involved vehicles are passenger cars.

Environmental,
Roadway and
Crash

Type of road Nilsson et al. [25] Rural two-lane roadways are dominant.
Lighting condition Nilsson et al. [25], Dissanayake and Roy [28], MDOT [35] No lighting is associated with more severe RwD crashes.
Road surface condition NHTSA [21], Nilsson et al. [25], Al-Bdairi et al. [26],

Dissanayake and Roy [28], Alruwaished [32], MDOT [35]
Contradictory results are found.

Median type Al-Bdairi et al. [26] ‘No median’ is potential concern for ‘centerline crossing’
RwD crashes.

Crash type Al-Bdairi et al. [26], Al-Bdairi et al. [27], Alruwaished [32] Majority of the crashes are single vehicle crashes.
Roadway curvature (horizontal
or vertical)

NHTSA [21], Jones and Baum [23], Nilsson et al. [25], Al-Bdairi
et al. [26], Al-Bdairi et al. [27], NHTSA [30], Dissanayake [29],
MDOT [35]

Horizontal curvature is associated with higher number of
RwD crashes.

Rural environment Dissanayake [29], NHTSA [30], MDOT [35] Rural roadways are dominant.
Posted Speed Limit Jones and Baum [23], Dissanayake and Roy [28], Dissanayake

[29], NHTSA [30], Alruwaished [33], MDOT [35]
NHTSA [31] indicates an odds ratio of 1.30 for fatal ROR
crashes.

Adverse weather condition Nilsson et al. [25], NHTSA [30] NHTSA [31] indicates an odds ratio of 1.24 for fatal ROR
crashes.

Location of poles or trees Jones and Baum [23], MDOT [35] Poles nearer to the travel paths have negative safety
effect.
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2. Methodology

2.1. Data preparation

The dataset used in this study is police-reported crashes in Louisiana
Department of Transportation and Development (LADOTD) from 2010
to 2016. The Louisiana crash database contains three major data tables:
1) crash table, 2) roadway inventory table, known as DOTD table, and
Fig. 1. Flowchart of d

Please cite this article as: S. Das, B. Storey, T.H. Shimu, et al., Severity analy
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3) vehicle table. Vehicle table contains five variables related to harmful
events (first harmful event, second harmful event, third harmful event,
fourth harmful event, and most harmful event). Once the filter is ap-
plied, the dataset contains 56,426 vehicle level information. A summary
statistic of the dataset reveals that TUOPs make up 95% of the most
harmful or the first harmful event scenarios. Out of these, trees contrib-
ute to 82% of TUOP crashes. Later, this table wasmerged with crash and
DOTD table. Fig. 1 illustrates the data preparation task in a flowchart.
ata preparation.

sis of tree and utility pole crashes: Applying fast and frugal heuristics,
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2.2. Descriptive statistics

Based on the literature review, twenty preliminary variables were
selected for analysis. Some variables were removed due to redundancy.
Additionally, variables with over-representation of an attribute were
omitted. For example, normal weather (in weather variable) and dry
pavement condition (in pavement condition variable) represent above
95%. Other variables were removed due to their high correlations with
other variables. For example, crash hour shows high correlation with
lighting condition. The injury classification system (known as KABCO)
divides crash severity into fivemajor groups: 1) fatal injury (K), 2) inca-
pacitating injury (A), 3) non-incapacitating injury (B), 4) minor injury
(C), and 5) non-injury or property damage only (PDO) or O. Table 2 pro-
vides a summary of TUOP crashes from 2010 to 2016. The primary
dataset contains 56,426 vehicle level crash information with 20 vari-
ables. The research team performed variable importance (by using ran-
dom forest algorithm) to determine the significant factors. After
removing the variables with less variable importance measures, the
final dataset contains 55,857 crash level data with 12 variables (11 pre-
dictor variables and one response variable).

Fig. 2 illustrates the total number of TUOP crashes by Louisiana par-
ishes. The colors used in the map indicate the frequency ranges (light
yellow for low frequencies to dark red for high frequencies). East
Baton Rouge, Orleans, and Jefferson are the parishes with high number
of TUOP crashes. East Baton Rouge observes highest number of TUOP
crashes (average 612 crashes per year). Tensas shows the lowest num-
ber of TUOP crashes (yearly average 3 crashes) among all parishes. The
top 20 parishes with high number of TUOP crashes contain approxi-
mately 72% of all TUOP crashes. The remaining 44 parishes contain the
other 28%. Although it is very difficult to obtain inventory on specific
tree and utility pole locations, locations with high crash proneness
from TUOP can be identified from historical crash data. Crash proneness
determination using a smaller spatial unit (for example, U.S. Census
tract, block group, or block) works better as it will identify the specific
zones with higher TUOP crashes. Future studies can focus on this issue.

Table 3 represents the proportional distribution of the 11 key predic-
tor variables used in the final dataset. Here, ‘access control’ accounts for
the type of regulation imposed on a highway to limit the access of traffic
flow from other roadways. A fully access-controlled highway operates
without any traffic lights, intersections, or property access to provide
an unhindered high-speed movement of traffic. According to the statis-
tics of the Louisiana dataset, ‘no control’ roadways account for over 85%
of all TUOP crashes, which is in linewith the findings of past studies [29,
30, 35]. The report developed by NHTSA [30] provides evidence of asso-
ciation between rural highways with high speed limits and susceptibil-
ity to ROR crashes. Dissanayake [29] argued that rural high-speed
highways increase the likelihood of ROR crashes with a possible expla-
nation that young drivers have tendency of speed on such roadways. Ac-
cording to the research by Maine Department of Transportation
(MDOT) [35], over 87% of all TUOP crashes in the state of Maine hap-
pened on rural areas with speed limit over 45 mph. ‘Alignment’ was
found to be one of the most significant factors in ROR and RwD crashes
by majority of the studies. However, roadways with no alignment con-
stitute over 68% of TUOP crashes in Louisiana. Curve related crashes
Table 2
TUOP crash severity distribution.

Year K A B C O All

2010 154 159 1098 2307 4022 7740
2011 153 184 1124 2258 4055 7774
2012 137 168 1101 2368 4031 7805
2013 157 149 1065 2256 4338 7965
2014 163 162 1068 2360 4200 7953
2015 158 180 1104 2446 4487 8375
2016 141 171 1109 2401 4423 8245
Grand total 1063 1173 7669 16,396 29,556 55,857

Please cite this article as: S. Das, B. Storey, T.H. Shimu, et al., Severity analy
IATSS Research, https://doi.org/10.1016/j.iatssr.2019.08.001
represent 25% of the crash data, which is disproportionately high
when compared with all crashes. According to previous studies [21,
23, 25–27, 29, 30, 35], roadway curvature and vertical grades impose
high probability of ROR and RwD crashes. These are aggravated by
human errors such as speeding, inattention, and other related issues.

Approximately 72% of all TUOP crashes in the dataset occurred
on two-way undivided roadways, which supports the findings by
Dumbaugh [36]. This study found thatmedians canhelp reduce roadside
andmidblock crashes, includingTUOP crashes.However, residential and
open county represent N60% of the TUOP crashes. Furthermore, TUOP
crashes aremore dominant on lower functional class roadways (making
up approximately 80% of all TUOP crashes).

Nearly two-third (67.21%) of TUOP crashes occurred on roadways
with posted speed in between 35 and 60 mph, which is a typical range
on principal arterial, collector, or local roadways. Posted speed limit
was identified in previous studies as another significant factor in TUOP
crashes [23,28–30,33,35], in which this variable was found to be signifi-
cantly affect ROR and RwD crashes through various statistical analyses.
Evidence of lighting condition (predominant variable being daylight
with 50.10% of crash occurrence) andweather effect (predominant var-
iable being clearweather with 64.73% of crash occurrence) contributing
to ROR crashes are found in some studies [25,28,30,35]. Some studies
[25,28,35] found association of adverse weather with a higher rate of
RwD crashes. However, other studies [29] aligned more closely with
the data from Louisiana and found evidence to the contrary. Passenger
carshave thehighestpercentagedistribution (45.88%) in thevehicle cat-
egory, which is also evident in the FARS data [30]. Of the primary con-
tributing factors, violations of the drivers and condition of the drivers
demonstrate the most significant effect on frequency of TUOP crashes.

3. Fast and frugal tree: theory

Fast and frugal tree (FFT) is a heuristic algorithm for binary decision
making. FFT is defined as a decision tree that contains n+ 1 exits, with
one exit for each of the first n − 1 cues, and two exits for the last cue
or variable threshold. The FFT algorithmmakes predictions about what
cues or variable categories will influence decisions as well as how deci-
sion makers might utilize these cues. Initially, an FFT starts by checking
the thresholds on the first cue to explore the exit condition then it con-
tinues to the other cues one after another until the final exit criteria are
met [45].

Like all other relevant heuristic approaches, FFTs considers selected
binary variables in order to simplify decision-making issues. FFT is gen-
erally composed of three major building blocks:

• Explore rules: Explore predictor variables and associated attributes
(variable categories) in the order of their importance.

• Stopping rule: Stop search as soon as one predictor allows it.
• Decision rule: Classify according to this predictor variable.

Laura Martignon first introduced FFT in 2003 [45]. The three com-
monly used FFT algorithms are max, zigzag, and fan. There are four
tasks to construct FFT algorithms: select cues or variables; determine a
decision threshold for each cue; provide cue rankings; and determine
cue exits [45].

Thefirst step of constructing FFT is to determine the decision thresh-
old for each cue. Thresholds are single values for numerical cues and
sets of factor values for nominal or categorical cues. Applying each cue
into training dataset while ignoring others, the single value or factor
maximizing the cue's accuracy is selected [45].

A confusion matrix table generates a simple representation of the
model's accuracy and the types of associated errors in the model. The
measures tp and tn infer the correct prediction (true positive and true
negative) respectively, whereas fp and fn measures refer to errors
(false positive and false negative). The algorithm of FFT is designed to
maximize frequencies in tp and tn while minimizing those in fp and fn.
This study considered five important measures out of several
sis of tree and utility pole crashes: Applying fast and frugal heuristics,
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Fig. 2. TUOP crashes in Louisiana parishes.
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performance measures: sensitivity (sens), specificity (spec), overall ac-
curacy (acc), weighted accuracy, and balanced accuracy (bacc). These
terms are described below:

sens ¼ tp
tpþ fn

ð1Þ

spec ¼ tn
tnþ fp

ð2Þ

acc ¼ tpþ tn
tpþ fpþ fnþ tn

ð3Þ

wacc ¼ tp
tpþ fn

�wþ tn
tnþ fp

� 1−wð Þ ¼ sens�wþ spec� 1−wð Þ ð4Þ

where,
sens = Sensitivity,
spec = Specificity,
acc = Accuracy,
wacc = Weighted Accuracy,
tp= true positive,
tn= true negative,
fp= false positive,
fn= false negative,
w= weighting factor

The notation 'sens' indicates the percentage of cases with positive
criterion values that are correctly predicted by the FFT algorithm. On
the other hand, 'spec' infers the percentage of cases with negative crite-
rion values correctly predicted by the FFT algorithm. The next three
measures ('acc,' 'wacc,' and 'bacc') define accuracy across all cases. The
notation 'acc' is defined as the overall percentage of correct decisions
by ignoring the difference between true positive and true negative. To
make a balance between sensitivity and specificity, one can use the
Please cite this article as: S. Das, B. Storey, T.H. Shimu, et al., Severity analy
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measure named as 'wacc'. This measure depends on a weighting factor,
which ranges between 0 and 1. In cases where sensitivity is more rele-
vant compared to specificity, the user can consider the weighting factor
above 0.50. For an ideal balanced situation, the user can use 0.50, which
is narrated as 'bacc' [45].

3.1. Results and findings

The final dataset used for FFT analysis consists of 55,857 TUOP
crashes with twelve variables. The response variable of this study is
the injury type (KABC or PDO) of TUOP crashes. To evaluate the perfor-
mance of themodel, both train (70% of the randomly selected data), and
test (the rest 30%) datasets were used in the final analysis. The research
team extensively used R package ‘FFTrees’ to perform the analysis as
well as for data visualization [45]. Fig. 3 illustrates the outputs of FFTs
by using train and test data. The output visualization has three basic
parts: top, middle, and bottom part.

The top part of Fig. 3 shows information about the dataset, including
the counts and percentage distributions of PDO and KABC crashes. For
example, top part of Fig. 3 indicates that the sample size of the dataset
is 39,100. The count of KABC TUOP crashes is 18,588 which represents
48% of the total TUOP crashes in the training dataset.

Themiddle part contains the deceision tree and icon arrays showing
the frequency and confusion table matrices at each node. The results
showed that FFT developed for each case (70% data as train data, and
30% data as test data) is the same. It indicates that three major criteria
can identify the severity type of TUOP crashes: posted speed limit, pri-
mary contributing factor, and highway type. The interpretations from
the FFTs are following:

• Training data: 1) If the posted speed limit is not 35–60 mph, and the
primary contributing factor is condition of the driver, there is a high
likelihood of the occurrence of a KABC TUOP crash; 2) If the posted
speed limit is not 35–60 mph, the primary contributing factor is not
sis of tree and utility pole crashes: Applying fast and frugal heuristics,
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Table 3
Descriptive statistics of the key variables.

Code Description Freq. Perc.

Access control
A No Control 47,586 85.19
C Full Control 5595 10.02
B Partial Control 2300 4.12
Z Others 376 0.67

Alignment
A Straight-Level 38,395 68.74
C Curve-Level 12,257 21.94
F On Grade-Curve 1494 2.67
Z Others 3711 6.65

Road type
B Two Way-No Physical Sep 40,134 71.85
C Two Way-Physical Sep 10,663 19.09
A One Way 2998 5.37
D Two Way-Physical Barr 1688 3.02
Z Others 374 0.67

Locality
E Res Scattered 13,763 24.64
G Open Country 12,621 22.60
D Residential 11,205 20.06
C Mixed Bus/Res 10,250 18.35
B Bus Continuous 6258 11.20
Z Others 1760 3.15

Highway type
C State Hwy 21,441 38.39
D Parish Road 11,962 21.42
E City Street 11,214 20.08
A Interstate 5710 10.22
B US Highway 5088 9.11
Z Others 442 0.79

Traffic control condition
A Control Functioning 43,053 77.08
E Lane Marking Unclear or Defective 11,599 20.77
Z Others 1205 2.16

Posted speed limit
0–30 0–30 mph 10,896 19.51
35–45 35–45 mph 20,889 37.40
50–60 50–60 mph 16,650 29.81
N 60 N60 mph 5182 9.28

Unknown 2240 4.00

Lighting
A Daylight 27,983 50.10
B Dark-No Street Light 13,938 24.95
C Dark-Continuous Street Lts 9422 16.87
D Dark-Str Lits-Intersect Only 2259 4.04
Z Others 2255 4.04

Weather
A Clear 36,154 64.73
C Rain 9187 16.45
B Cloudy 9059 16.22
Z Others 1457 2.61

Vehicle type
A Passenger Car 25,628 45.88
B Lt Trk/Pickup 16,160 28.93
S SUV 8919 15.97
C Van 1320 2.36
Z Others 3830 6.85

Primary contributing factor
A Violations 35,211 63.04
D Condition of Driver 8941 16.01
B Movement Prior to Crash 7416 13.28
E Vehicle Conditions 1308 2.34
G Roadway Condition 1157 2.07
Z Others 1824 3.27
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the condition of the driver, the highway type is either state or U.S.
highway, and weather is either clear or cloudy, there is a high likeli-
hood of the occurrence of a KABC TUOP crash;
Please cite this article as: S. Das, B. Storey, T.H. Shimu, et al., Severity analy
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• Test data: 1) If the posted speed limit is not 35–60 mph, and the
highway type is either state or U.S. highway, there is a high likeli-
hood of the occurrence of a KABC TUOP crash; 2) If the posted
speed limit is not 35–60 mph, the highway type is neither state
nor U.S. highway, and the primary contributing factor is condition
of the driver, there is a high likelihood of the occurrence of a KABC
TUOP crash; 3) If the posted speed limit is not 35–60 mph, the
highway type is neither state nor U.S. highway, the primary con-
tributing factor is not condition of the driver, and the weather is ei-
ther clear or cloudy, there is a high likelihood of the occurrence of a
KABC TUOP crash;

The above interpretations from the FFT algorithm associating driver
condition, posted speed limit, andhighway type is supported by thefind-
ings from some previous studies, in which similar statistical association
between these factors were found. Dissanayake's [29] binary regression
models illustrated positive coefficients for posted speed limit (odd's
ratioN 1.0) and intoxication (odd's ratioN 3.0), indicating ahighprobabil-
ity of more severe crash outcomes for those variables. However, freeway
as crash locations, badweather, andother physical conditionof thedriver
(for example, fatigue, illness) were found to the statistically non-
significant in themodels of Dissanayake's study, which contradicts with
the findings of the FFT. Alruwaished [32] also found positive correlation
between alcohol consumption and posted speed limit affecting injury se-
verity inRORcrashes. A studybyNHTSA [31] showed ahigher probability
of fatal single-vehicle ROR crashes associated with factors such as
sleeping, alcohol impairment, high posted speed limit, and adverse
weather effect. The odd's ratio of these factors in the logistic regression
models were found to be 3.21, 1.94, 1.30 and 1.24 respectively indicating
a higher likelihood of ROR crashes occurring in these conditions.

The rules that are generated for the training and the test data are not
widely varied. However, the training data shows higher specificity, and
the test data shows higher sensitivity. Whether a crash was coded as
KABC or as PDO was largely affected by certain key factors including
the posted speed limit (either lower than 30 mph or above 60 mph), if
the highway type was either a state or U.S. highways, clear versus
cloudy weather, and the condition of the driver as the primary contrib-
uting factor.

The bottom part of Fig. 3 shows the FFT's performance in receiver
operating characteristics (ROC) curve, confusion matrix, and levels
for a range of performance measures. The 'ifan' algorithm explicitly
selects and ranks cues' (threshold of variable category or category-
groups) accuracies. Visualizing marginal cue helps in understanding
the ranking of each cues in terms of wacc. The top five variable cat-
egories are colored and described in the legend. Fig. 4 shows the
resulting plot for the training data. The graph reveals that the
three cues (posted speed limit, primary contributing factor, and
highway type) used in FFT (shown as #1 in Fig. 3) have the highest
individual balanced accuracies. Fig. 4 also shows that the two next
best cues are weather and locality. The extracted knowledge can
be useful in guiding a top-down process of future FFT development
using similar datasets.

One of the most convenient ways to present the characteristics of a
diagnostic test is the ROC curve. An ROC curve visually displays the
trade-off between 'sens' and 'spec' in classification algorithms. As 'sens'
increases, 'spec' decreases (i.e., 1 − spec increases). The bottom right
plot (Fig. 3) shows the performance of all FFTs in ROC space (green cir-
cles with numbers correspond to FFTs). FFT (shown as #1) has the
highest weighted accuracy (colored in solid green). Additional points
in this plot correspond to the performance of competing classification
algorithms: standard decision trees (CART), logistic regression (LR),
random forests (RF), and support vector machines (SVM). In this case,
FFT has a higher 'sens' than LR, CART, and SVM. The current analysis
showed that a simplified tree algorithm can predict severity of TUOP
crashes more precisely than sophisticated machine learning tools such
as CART and SVM.
sis of tree and utility pole crashes: Applying fast and frugal heuristics,
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Fig. 3. Fast and frugal tree outputs for the training data.
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4. Conclusions

This study analyzed all TUOP crashes in Louisiana that took place
over the course of seven years (2010–2016) and identified key variables
that contributed to these crashes. In this study, a variety of variables
were considered, including access control type, alignment, road type, lo-
cality, highway type, traffic control condition, posted speed limit, light-
ing, weather, vehicle type, and primary contributing factor. Results from
FFT heuristics revealed that posted speed limit, primary contributing
factor, highway type, weather, and locality typewere the key predictors
of TUOP crashes. The key attributes that affected the injury severity
(KABC and PDO crashes) are posted speed limit (either lower than 30
mph or above 60 mph), state and U.S. highways, clear versus cloudy
weather, and condition of the driver as the primary contributing factor.

Reduction of TUOP crashes could significantly support the states'
vision zero plans. However, designs of countermeasures to remove
these roadside fixed objects are difficult to implement due to two rea-
sons: 1) trees provide aesthetics and removal of trees would affect pub-
lic sentiment, as well as other environmental considerations, and 2) the
Please cite this article as: S. Das, B. Storey, T.H. Shimu, et al., Severity analy
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ownership of utility and other poles is controlled by various private
companies rather than state agencies. Nonetheless, it is important to re-
search the causes of TUOP crashes in order tomake relevant policies and
new countermeasures. Together with the visualizations of the rules, the
current method provides interpretable results to the transportation
safety practitioners.

This study provides valuable information regarding associative pat-
terns of contributing variables in TUOP crashes. However, the current
study is not without limitations. One of the limitations is that the cur-
rent study is kept restricted to the identification of geometric, crash, en-
vironmental, and vehicle-related factors. Future studies can incorporate
additional variables, like population and demographic characteristics,
driver information, and real-time driver behavior. Additionally, addi-
tional insights from the the FFT algorithms can be achieved by extend-
ing the tree structures. Another limitation is that FFT is that does not
provide quantitative impact of the contributing factors. It is important
to note that ignoring information may be hard to justify in many
cases. For complex problems, FFT can be used as the balance between
high-cost and low-cost data driven decision making. Notwithstanding
sis of tree and utility pole crashes: Applying fast and frugal heuristics,
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Fig. 4. Accuracies of the top five variable categories (training data).
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the current limitations, this study provided a simplified decision mech-
anism (with high classification accuracies) to identify injury severity of
TUOP crashes instead of incorporating uninterpretable machine learn-
ing algorithms.
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